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Abstract—In this paper, a comprehensive optimization model
for decision support on public transportation system electrifi-
cation is given. The basic assumption is that the transition is
being governed centrally. This assumption together with a rather
deterministic nature of the public transportation compared to a
private enables a holistic approach in transition towards a fully
electric system. The model comprises the following components:
the electrification of the buses, the building of the charging
stations and the electric grid reinforcement. These investment
components are combined with the planned operating costs
related to the cost of the energy used for charging and together
yield a holistic model for transition planning.

NOMENCLATURE

Sets
ΓB Set of all electric buses
ΓI Set of all potential charging stations
ΓL Set of all distribution lines affected by the poten-

tial charging station connections
ΓN Set of all distribution nodes incident to the lines

in ΓL

ΓLn Set of all lines connected to the node n, n ∈ ΓN

Optimization variables

cC Components of the costs C = {bs, cs, gr, op} (bs
- battery storage, cs - charging station, gr - grid
reinforcement, op - operating costs)

zi Binary variable denoting if the charging station i
is built, i ∈ ΓI

P csi Installed charging capacity of i-th charging sta-
tion, i ∈ ΓI

Emaxb Maximal battery capacity of b-th E-Bus, b ∈ ΓB

Schb,t,ξ Power bought for charging E-bus b at time t in
scenario ξ

SoCb,t,ξ State-of-charge of the battery in E-bus b at time
t in scenario ξ

wl Binary variable denoting if the distribution line l
is overloaded, l ∈ ΓL

Pl, Ql Active and reactive power flow on distribution
line l, l ∈ ΓL

∆Vn, δn Voltage magnitude change (from nominal) and
angle n, l ∈ ΓN

Input parameters

cI.f., cI.v.Fixed and variable costs associated with invest-
ment I = {bs, cs, gr} (bs - battery storage, cs -
charging station, gr - grid reinforcement)

λt,ξ Electricity price, period t, scenario ξ
Sdrb,t,ξ E-bus storage power used for driving, bus b,

period t, scenario ξ
gl, bl Distribution line parameters (real and imaginary

parts of nodal admittance matrix), l ∈ ΓL

dl Distribution line length, l ∈ ΓL

Smaxl Distribution line loading limit, l ∈ ΓL

Pn, Qn Active and reactive load connected to node n,
n ∈ ΓN

I. INTRODUCTION

Presence of electric vehicles (EV) has been steadily in-
creasing in recent years and is expected to grow with even
greater trends [1] following various policies which promote
the use of EVs. It is well known that a large portion of
human energy consumption and the consequent carbon emis-
sions are related to the transportation. In order to reach
any significant reductions in human impact on environment,
this sector has to undergo a major transition towards an
carbon neutral transportation. Furthermore, electrification of
the transportation system has other benefits related to the
grid support. Fluctuating nature of renewable sources requires
storages which are available when the electric vehicles are not
used for driving.

The trends are present in the public transportation as
well and in this paper we are focused on improving the
planning of public transportation transition towards a fully
electric. Compared to the private transportation, the public
transportation systems are managed centrally and hence it is
reasonable to systematically plan and optimize the transition.
The biggest difficulty in these models is to take into account
all of the costs influencing the transition while maintaining
the model complexity manageable. Two primary components
of the transition are the bus fleet electrification and the building
of the supporting charging infrastructure. These objectives
conflict since the larger battery means less frequent charging
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requirements and vice versa. Secondary component of the tran-
sition is related to the necessary grid reinforcement following
the newly added electric load. All of these components are
further constrained by different technical limitations. In this
paper, we propose a comprehensive optimization model that
accounts for all of these factors and as such presents a novel
contribution to the existing body of modeling approaches.
Figure I depicts these three major components considered in
the model.

Fig. I. Principal depiction of the components of the model

In existing literature different components of this problem
have been investigated. For example, in [2] and [3], a de-
tailed description of the formulation, complexity and solution
of the EV charging station placement and design is given.
However, due to the major difference in the private and the
public transportation system, these approaches are not suitable.
Moreover, the impact on the electric grids has not been
considered in [2]. On the other hand, in [4], [5] emphasis
is given to the impact on the grid, but again, for the private
vehicles. However, charging station placement based on the
grid impact alone, without the costumer side of the problem,
provides only a partial conclusion. A step further in terms of
comprehensiveness is taken in [6] and [7]. In [6], a bi-level
optimization is adopted in order to co-optimize EV parking lot
participation on electricity market and vehicle accommodation
versus their disposition. Even within the class of private
vehicles, a single approach is inadequate since the different
types of areas can require a completely different approaches
as indicated in in [8]. Modeling techniques vary as well, while
these papers mainly adopt a centralized optimization, a game-
theoretic approach is adopted in [9].

Compared to all of the mentioned models, the major contri-
bution we present here is the comprehensiveness of the model
enabled by the characteristics of the public transportation
and the fact that its electrification is governed centrally.
We consider both the investment and the operational costs.
Furthermore, within investment costs, the model accounts for
the fleet electrification, the supporting infrastructure and the

electric grid reinforcement as indicated in Fig. I. This kind
of framework has not been introduced so far and presents a
novel approach in the existing body of transportation planning
frameworks. The model is validated on an existing public
transportation system in Gothenburg, Sweden which is cur-
rently undergoing a transition towards a fully electric system.

II. COST IDENTIFICATION

Charging station disposition optimisation is guided by sev-
eral distinct costs. This problem is further complicated by the
fact that it comprises both the long-term costs of operating the
charging stations as well as the immediate investment costs.
Due to the size of the problem, it is necessary to neglect
several costs/benefits since their impact is rather negligible.
The investment costs considered in this problem are:
• costs of batteries,
• costs of building charging stations,
• costs of grid reinforcement.

The only operating cost considered in this problem is the costs
of charging energy. Other operating costs like maintenance and
running can be discounted and added to the investment costs.

Each of the investment costs identified above has a typical
structure decomposable to fixed and variable costs. In the case
of battery costs, the fixed cost (costs independent of the battery
size) are constant and mandatory since the batteries must be
installed and, as such, are not subject to the decision making.
The battery size, on the other hand, is the variable component
of the costs and subject to the decision making. In the case of
charging station building, both the fixed costs related to the
charging stations building and the variable costs related to the
size of each station are subject to the decision making, i.e. the
number, location and the size of charging stations are a result
of the optimization problem. In the last component, the matter
is less straightforward and requires necessary simplifications
in order to make the problem manageable. If the charging
stations (during the time of extreme conditions) cause a line
overload, these lines would have to be reinforced. However, the
problem of line overloading could be solved via alternative so-
lutions (reconfiguration, grid-support devices, etc.) or through
a construction of new lines which would alternate the existing
grid configuration. Inclusion of these options into the decision
making process is out of the scope. Instead, we establish a
functional connection between the grid reinforcement costs
and the distance of the overloaded grid. This means that if a
grid line l is overloaded, an additional investment cost will
appear consisting of the fixed costs and the costs dependent
on the line length.

A. Mathematical formulation

The costs introduced above can be mathematically modelled
in the following set of equations.

The costs for batteries installed in buses are captured with
the following equation:

cb = N buscb.f. + cb.v.
∑
b

Emaxb . (1a)
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In (1a), fixed and size-dependant battery costs are multiplied
with the number of buses. More details on the battery costs
can be found in [10], and for the second-life batteries in [11].

The costs for charging station building are captured with
the following equation:

ccs =
∑
i

(
zic

cs.f.
i + ccs.v.i P chi

)
. (1b)

In (1b), fixed and variable costs can be identified. In this case,
fixed costs are dependent on whether the station is built or
not. Variable costs are dependent on the size of the charging
station determined with the charging capacity. This charging
capacity is zero if the charging station is not built.

Finally, the last component in the investment costs is the
necessary grid reinforcement. As it was explained above, we
will assume that these costs can be determined as a function
of the distance of the overloaded grid [12]. The following
equation captures these costs:

cgr =
∑
l

wl

(
cgr.f. + cgr.v.dl

)
. (1c)

In (1c), both the fixed and variable costs are multiplied by
the lines identified as overloaded.

Operational costs are the costs for the energy used for
battery charging. These can be determined with following

copy =
∑
ξ

πξ
∑
t

λt,ξS
ch
t,ξ. (1d)

The expression 1d is a sum of products of the energy
spend in a single temporal instance and the corresponding
price within representative days. These days should resem-
ble typical days in terms of driving schedules (weekday,
weekends, special events, ...) which will then form a set of
representative daily energy usage patterns. Each of these days
is then weighted with its probability in a year with a factor
πξ. It should be noted that there are other opportunities for
profit, for example, the storage renting to the power supplier
as described in [13]. However, it is still not clear to which
extent are these opportunities feasible, and a further research
should be conducted in order to evaluate this opportunity.

Finally, the objective of this optimisation problem is to
minimise the total investment and operational costs

min cb + ccs + cgr + γ

Ny∑
y=1

copy (2)

where γ represents the discount factor, while the operating
costs are calculated for the following Ny years. The formula-
tion in 2 captures the net present costs of the transition.

III. BUS CHARGING/DRIVING PATTERN ESTIMATION

The basic assumption here is that the bus driving patterns
are known based on the existing schedules made by the public
transport operator. These schedules are determined with the
set of times when the driving regime starts {td1 , td2 , ..., tdN },
the set of pairs of times when the parking regime starts

and the locations where the parking regime takes place
{{tp1 , i1}, {tp1 , i2}, {tp3 , i1}, ...} with i ∈ ΓI . It is important
to clarify that these sets are related only to those parking
locations where the building of charging station is considered.
Parking times at other locations are included in the estimated
power usage for driving. Figure II depicts these times and
locations for an arbitrary bus line. The same figure depicts the
dynamics of the battery storage usage in this bus.

Fig. II. Graphical description of the bus schedules

Another clarification is necessary, while the times when the
driving starts are quite deterministic, parking start times can
vary depending on the traffic conditions. However, for the sake
of simplicity, these parking start times will be considered as
deterministic. Furthermore, the storage power used for driving
will also be considered deterministic, although this power can
vary depending mostly on the number of passengers in the
bus.

These schedules are used for calculation of the matrix which
establishes the temporal relation between each bus and each
charging station. Elements of this matrix are defined in the
following:

Ab,i(t) =

{
1 if bus b is on the location i at time t
0 else

(3)

Following set of constraints capture the dynamics of each
bus storage.

SoCb,t,ξ = SoCb,t−1,ξ + ∆t
(
Schb,t,ξ − Sdrb,t,ξ

)
, ∀b,∀t,∀ξ

(4a)
0 ≤ Ab,i(t)Schb,t,ξ ≤ P csi , ∀b,∀t, ∀ξ (4b)

0 ≤ Schb,t,ξ ≤ 6Emaxb , ∀b,∀t,∀ξ (4c)

SoCmin ≤ SoCb,t,ξ ≤ SoCmax, ∀b,∀t, ∀ξ (4d)

SoCb,0,ξ = SoCb,T,ξ, ∀b,∀ξ (4e)

In constraint (6), a battery charging dynamics are described,
where Sdr denotes an estimate on the average E-bus energy
usage for driving. According to [14], this parameter ranges
from 0.8 kWh/h to 2.82 kWh/h, Constraints (4b) and (4c)
describe the bounds on the charging power. The first bound is
related to the charging station capacity stating that the sum of
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all charging powers related to the instantaneously connected
buses has to be lower than the charging station capacity.
The second bound is related to the maximal battery charging
rate which equals 6 times the capacity [15]. Constraint (4d)
bounds the energy content of a battery between the admissible
bounds while the constraint (4e) imposes the continuity on the
charging dynamics.

In the constraints above, no requirements on the order of
charging are placed. This kind of formulation might end up
in a feasible but unrealistic charging dynamics. For example,
the buses might switch charging order each time instance. In
order to avoid these kinds of results an additional objective can
be added which minimizes the number of charging startups.
Since this objective is not of the same nature as the primary
economic objectives, they need to be combined carefully. In
a different approach, limitations on the charging interchanges
could be added through constraints.

Finally, the last constraint in this part of the model is related
to the decision on whether the station is built and what is it’s
size. This is captured in the following:

ziP
ch,min
i ≤ P chi ≤ ziP

ch,max
i , ∀i (5)

In (5), the size is bounded between the minimal and the max-
imal required size if the binary variable is active, otherwise,
the station is not being built and the size is forced to zero.

IV. ELECTRIC GRID CONDITIONS ESTIMATION

A. Mathematical formulation

Charging stations connect to the 10 kV distribution grid. In
a similar manner to that of Bus-to-charging station, the relation
between each charging station and the node in the distribution
grid has to be established. The following matrix establishes
this connection:

Bn,i =

{
1 if charging station i is connected to the node n
0 else

(6)
Linearized power flows have been extensively used in large-

scale problems. The nodal formulation of the power-flow
equations is defined in the following two equations which
essentially state that the net injections at each node have to
equal zero for both the active and reactive power.

Pi +Bn,iP
ch
i −

∑
l∈ΓLi

Pl = 0, ∀i ∈ ΓN (7a)

Qi −
∑
l∈ΓLi

Ql = 0, ∀i ∈ ΓN (7b)

where cosφcs is the load angle of a charging station and Pl
and Ql are the branch l active and reactive power flow defined
in:

Pl = V 2
i gl − ViVj (glcosδij + blsinδij) (7c)

Ql = −V 2
i bl + ViVj (blcosδij − glsinδij) (7d)

Here, we adopt linearisation proposed in [16]. Assuming that
the voltages will not deviate significantly from the nominal
conditions, the voltage at a node i can be reformulated as

Vn = 1 + ∆Vn, ∀n ∈ ΓN (7e)

The second simplification arising from the assumption on a
near nominal operating conditions (small δ) is the following

sinδij ≈ δij
cosδij ≈ 1

(7f)

The equations (7c) and (7d) now reduce to

Pl =
(

∆Vi −∆Vj

)
gl − blδij (7g)

Ql = −
(

∆Vi −∆Vj

)
bl − glδij (7h)

with additional assumption that the second-order terms can be
neglected.

The above equations determine the approximate operating
conditions in the distribution network which we want to use as
an indicator of the necessary grid reinforcement costs. This can
be achieved through the assumption that, if the the apparent
power flow through the branch ij is higher than the maximal
loading, the same branch requires replacement with a new one.
In (1c), the requirement for the replacement is denoted with
wi, and based on the previous statement, it can be defined
with the following

wl =

{
1 if Sl > Smaxl

0 else
(8a)

where
S2
l = P 2

l +Q2
l (8b)

In order to ensure the realization of the binary variable wl
according to 8a, the following constraint is used:

wl (S
max
l )

2 ≤ S2
l ≤ (1− wl) (Smaxl )

2
+ wlM (8c)

where M is a large number greater than Smaxl . Obviously, if
the S2

l is lower than (Smaxl )2, wl is forced to zero. Otherwise,
wl is forced to 1. The only difficulty here is that the model
is no longer mixed-integer linear due to the quadratic term
in in the constraint 8c. This difficulty is resolved through the
linearization of the quadratic function depicted in Fig III.

The following constraints determine the approximated value
of the active and reactive component of the power-line flow.

P 2,approx
l =

Ns∑
s=1

kPs ∆Pl,s

Q2,approx
l =

Ns∑
s=1

kQs ∆Ql,s

(8d)

Ns∑
s=1

∆Pl,s = Pl

Ns∑
s=1

∆Ql,s = Ql

(8e)
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+

Fig. III. Graphical description of the quadratic function linearization applied
on the power line loading approximation

0 ≤ ∆Pl,s ≤ ∆Pmaxl,s ∀s
0 ≤ ∆Ql,s ≤ ∆Qmaxl,s ∀s

(8f)

In (8d), the approximated value is calculated as the sum of
linear segments. Constraint (8e) ensures that the sum of active
and reactive power-line flows equals the actual power-line
flows determined in (7c)-(7d). The last two constraints (8f)
bound the segments between the linearized bounds. If the S2

l in
(8c) is replaced with the linearized formulation, the following
constraint can approximate the original quadratic expression:

wl (S
max
l )

2 ≤
Ns∑
s=1

(
kPs ∆Pls + kQs ∆Qls

)
≤ (1− wl) (Smaxl )

2
+ wlM

(8g)
The approximated apparent power flow in (8d) can be calcu-
lated with different combinations of segments while satisfying
constraints (8e)and (8f). The correct choice is ensured with the
optimization objective which ”avoids” the line reinforcement.
In order to avoid the line reinforcement, the segments will be
chosen in a manner which favors smaller kP,Qs . However, if
the apparent power flow is not on the borderline operation and
the binary variable wl is not affected, the correct choice is not
ensured. This essentially means that the apparent power flow
might be inaccurate in some situations but the line reinforce-
ment requirements are correctly indicated in every situation.
Since that is the main objective of this approximation, this
formulation is appropriate.

If we assume that in some situation, all charging stations
might be used at their maximal capacity, the same capacity
can be superposed on the maximally loaded grid. Therefore,
in equations (7a) and (7b) maximal nodal load is introduced
via Pi +Bn,iP

cs
i and Qi +Bn,iP

cs
i cosφcs.

V. CASE STUDY

A. Case study and solution technique

For a case study, the presented model is used as a decision
support for the undergoing transition of Gothenburg public

transportation system towards a fully electric system.
Due to the space limitations, we will focus on a district

Vastra Frolunda in Gothenburg. The costs used in this analysis
are depicted in Table V-A. Five potential locations for charging
stations are considered together with an option of Depo
charging. A bus scheduling system determines the timetable
for each of 14 buses based on the trip frequency requirements
including the charging time.

TABLE I
FIXED AND VARIABLE COSTS OF THE INVESTMENT COMPONENTS

Fixed Variable
Battery 5k e 0.4k e/kWh
Charging station 200k e 0.5k e/kW
Grid reinf. 5k e 0.1k e/km

Proposed optimization model is solved using GUROBI
solver [17] within Python environment.

B. Results

In this section, the results of the proposed model applied on
the case study described above are presented. It is important
to point out that these results are related to this specific case
study and should not be taken as general.

In this specific case study, optimal system structure includes
a single charging station with a 32 kW charging power. This
charging station is built at the location 6 which is related to
Depo charging. It is important to point out that this result is
related to the fact that the area under consideration is not large
in terms of the number of buses. This kind of system can thus
favor larger batteries with a single charging site.

The second important result of the proposed model is the
battery size. The choice for the investor in this case is to
order buses with the same battery size across the entire fleet.
The required battery capacities for each bus are depicted in
Fig. IV Since the optimal choice for charging stations is the
Depo charging, batteries will be charged for the complete day
in a single charging. Therefore, the battery capacity has to
handle the required driving duty. Depending on the driving
requirements, battery capacities vary. Smaller capacities in Fig
IV are related to buses driving rush hours during couple of
hours in a day. The maximal capacity required is related to
the bus 3 and equals 21.23 kWh. This amount is hence, the
necessary capacity for the entire fleet.

Finally, the cost decomposition depicted in Fig. V indi-
cates the impact of each cost component in this case study.
Obviously, the biggest component is the battery cost which
equals approx. 370000e. The second largest component is
the charging energy equaling approx. 330000e. The cost
of charging stations is the third component equaling approx
200000e. Finally, the last component, which is negligible
compared to the other components in this case study, is the
grid reinforcement cost equaling approx. 10000e.

VI. CONCLUSION

The model presented in this paper comprises a com-
prehensive framework for the public transportation system
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Fig. V. The cost structure

electrification. Compared to the existing models, a signifi-
cant level of comprehensiveness has been achieved through
the incorporation of several objectives which arise in the
transportation electrification planning. These objectives span
from the bus electrification design (battery sizing) to charging
stations installation (disposition and sizing), from the grid
reinforcement to charging energy consumption. This kind of
framework is necessary due to the main difference between
the public and the private transportation electrification. With
the public transportation, the transition is managed centrally
and performed in short intervals with high investments. Due
to this specificity, decision support in terms of the presented
optimization model is essential.

The proposed model is tested on a realistic case study.
In Gothenburg district of Vastra Frolunda, a local public
transportation service provider is conducting an electrification
of the bus fleet. The results of the model provide information
on the optimal system design per each component and the
corresponding costs.
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